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Abstract

This study examines the efficacy of Japan’s large-scale currency interventions
between January 2003 and March 2004. Based on FIML estimator with ATE in a
simultaneous equations Tobit model, we analyzed why interventions can be effec-
tive by considering their effects on exchange rates as their influence of an average
trend. We considered these effects from two aspects based on structural estimation
and used trend analysis for the estimation period based on a formulation of policy
evaluation. Our empirical results indicated that buying dollars equivalent to one
trillion yen could induce a same-day depreciation exceeding 1% in the yen. This
effect is two-three times that resulting from usual regression analysis. Compared
with the counterfactual case in which no intervention is assumed to have occurred
on the day of intervention, our results suggest that the intervention effect was to
nearly completely offset the appreciation trend in the yen.

Keywords: Foreign exchange intervention, Simultaneous equation Tobit model,
FIML estimator, Test for endogeneity, Average treatment effect
JEL Classification: F31, C34, C54

1 Introduction

Numerous studies have investigated the effects of foreign exchange intervention em-

ploying various methods and perspectives. Exchange rate fluctuations occur because of

intervention, or authorities intervene because of unexpected exchange rate fluctuations.

Therefore, it is important to distinguish between the two interactions and to consider a

simultaneous equation model. This paper examines the endogeneity of exchange rates

and intervention, which might cause a problem in estimating the efficacy of intervention.

In addition, we derive the effect of intervention by positing a counterfactual situation to
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measure its efficacy in the framework of program/policy evaluation developed in recent

years. Nonetheless, endogeneity still cannot be ignored in this framework.

Among representative papers that examine simultaneity between exchange rate re-

turns and intervention, Kearns and Rigobon (2005), Chen et al. (2012), and Iwata and

Wu (2012) addressed the importance of endogeneity and derived the effect of intervention

using Japanese data. Their models stem from Amemiya’s (1974) simultaneous equation

Tobit model. This model is especially apt for this purpose because intervention is an

endogenous variable and it expresses the market response function regardless of whether

intervention occurs or not. Although it is a structural estimation, we can utilize its fea-

ture that the market response function is always identified without exclusion conditions

(cf. Maddalla, (1983)), whereas previous studies discuss the identification problems. On

the other hand, it observes whether equilibrium exists (cf. Amemiya, (1974)).

Although those studies have established the effectiveness of Japanese intervention, this

paper differs in three respects. First, it targets the great intervention in 2003 and 2004.

Previous research did not examine this period, which is ideal for assessing intervention

by establishing a counterfactual situation in the trend of the yen’s appreciation despite

active and extensive intervention. Second, we demonstrate how the volume of each

day’s intervention affects the exchange rate and examine the parameter of interest using

a simple model of order flow following Lyons (2006). Third, we use a full information

maximum likelihood (FIML) estimator, which is the efficient estimator for co-estimating

market and policy response functions. Kearns and Rigobon (2005) conducted a simu-

lated generalized method of moments (GMM) estimation, whereas Chen et al. (2012)

conducted a Bayesian method (MCMC). Although the sample periods differ, our results

exhibit effects similar to Kearns and Rigobon (2005) and Chen et al. (2012), which are

larger than those under usual ordinary least squares (OLS) estimation.

In addition, we address three important econometric issues as extensions to previous

studies. First, we propose test statistics for endogeneity since, to our knowledge, previ-

ous studies have not verified whether it exists. Second, we derive the average treatment

effect (ATE) in a simultaneous equations Tobit model from its reduced forms. Fatum

and Hutchison (2010) conducted one of the few studies that assess the efficacy of inter-

vention in the framework of policy evaluation. This framework can clarify the policy

effect using non-intervention as a benchmark. Compared with the ATE that Fatum and

Hutchison (2010) conducted, our measurement of the ATE on the treated (ATE1) is

more suitable since ATE might hamper the efficacy of intervention. In this sense, we

improve their results. Third, we propose that exchange rate volatility, usually estimated

by a generalized autoregressive heteroskedasticity (GARCH) model, can be measured by

a policy evaluation model. We demonstrate how today’s intervention affects volatility.

GARCH analysis does not measure the influence because it can be conditioned only

on the previous day’s intervention. Therefore, volatility is unchanged whether today’s

intervention occurs or not.

The paper is organized as follows. Section 2 reviews previous literature and describes
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Japan’s 2003-2004 foreign exchange intervention. Section 3 explains the parameters of

interest and defines the intervention effect based on order flows. Section 4 summarizes

the statistical estimation. Details appear in the Appendix. Section 5 provides empirical

results. Section 6 concludes the paper.

2 Characteristics of the large foreign exchange interven-

tion of 2003-2004

Japan’s Ministry of Finance began publishing data about foreign exchange market

intervention volume in August 2000. Figure 1 presents the data (monthly totals for

January 1992-March 2004). Frequency and volume of intervention differ depending not

only on changes in the exchange rates but also the policy set by the Vice Minister of

Finance for International Affairs (Ito, (2003)). Intervention between January 2003 and

March 2004 by Vice Minister Mizoguchi was unprecedented in size and frequency. Ito

(2003) and Fatum and Yamamoto (2012) found that intervention volume significantly

influenced exchange rates.
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Fig. 1: Japanese intervention (100 million yen) and yen-dollar exchange rate (Monthly)

Figure 2 compares daily data of intervention against changes in exchange rates during

the period overseen by Vice Minister Mizoguchi (January 2003-March 2004). It indicates

that the Mizoguchi-Taylor Intervention from late 2003 to March 2004—named after

Mizoguchi and John B. Taylor, the US Treasury’s Under Secretary for International
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Affairs—exceeded 1 trillion yen per day almost continuously throughout the period.

This was apparently intended to counter sales of dollars acquired through Japan’s trade

surplus and extraordinary purchases of yen by foreign investment funds. The situation

in Iraq surrounding September 2003 generated excessive capital inflows.

Despite active foreign exchange intervention during the period, however, the yen-dollar

rate remained unchanged until February 2004. In particular, at the September 20, 2003,

G7 meeting, media reports criticizing Japan’s frequent intervention were followed by a

sudden and dramatic appreciation of the yen. Therefore, it is difficult to obtain signifi-

cant results when testing whether the period’s large-scale intervention affected exchange

rates. Fatum and Hutchinson (2010) estimated the ATE of their policy evaluation model

and found that intervention from January 14, 2003-March 31, 2004 did not significantly

affect rates. Ito (2004) compared this period with the period June 21, 1995-January 13,

2003 and found that the effect of intervention on exchange rates had decreased by half.
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Fig. 2: Japanese intervention (100 million yen) and yen-dollar exchange rate (Daily)

Previous studies have been unable to estimate the effects of the period’s massive

intervention, but endogeneity substantially affects coefficients and ATE estimates. Re-

examination is warranted. The next section discusses measuring the effect of intervention

using order flows.
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3 Efficacy of intervention policies

This section establishes the parameters of interest. The effects of foreign exchange in-

tervention, as indicated by order flow, pass through to other market participants through

individual trading. With reference to Lyons (2006, Ch. 7), the process leading up to

interventions being reflected in prices can be explained as follows:

Pt = ψ1

t∑
τ=1

ΔRτ + ψ2

t∑
τ=1

Xτ , (3.1)

ΔPt = ψ1ΔRt + ψ2Xt , (3.2)

where Pt is exchage rate level, ΔPt = Pt −Pt−1 and ΔRτ represents publicly observable

macroeconomic information, as we assume that ΔRτ
i.i.d.∼ N (0, σ2R). Daily order flow

Xt can be expressed as the grand total of the net transactions of n interbank dealers as

follows:

Xt = φ1

n∑
i=1

Cit = φ1Ct , (3.3)

where the customer’s order Cit
i.i.d.∼ N (0, σ2c ). As equation (3.1) shows, Pt is eventually

expressd as a random walk.

We slightly expand Lyons’s framework (2006, Ch. 8) for measuring the efficacy of

interventions. In addition to customer transactions, order flow includes intervention by

a central bank. When a central bank intervenes in foreign exchange markets, interbank

dealers can be categorized as bank i, which did not receive the order from the central

bank, and bank j, which did. It follows that order flow Xt in the overall market is

Xt =
∑
i

φ1Cit +
∑
j

φ1(Cjt + Ijt)

= φ1(φ2It + vt) + φ1It , (3.4)

where It =
∑

j Ijt is the total amount of intervention. The second equality is based on

empirical results in Girardin and Lyons (2008) or Ct is always written as

Ct = φ2It + (Ct − φ2It)

= φ2It + vt , (3.5)

where vt is unobserved and possibly correlated with It . Thus, φ2 is the indirect effect

of intervention on hedge funds and similar entities. Then the change in exchange rates

is

ΔPt = β2It + ψ1ΔRt + ut , (3.6)

where ut = ψ2φ1vt is treated as the error term. The It coefficient β2 = ψ2(φ1φ2 + φ1) is

the total effect, i.e., the sum of direct and indirect effects. The central bank is merely
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one customer that generates order flows; however, in published data, relatively large

orders appear in connection with the central bank. Thus, the central bank sometimes is

a unique customer able to influence order flows of other customers.

Let us consider effects of intervention in more detail. Because expectations for Cit

and Ijt generally are not zero, considering vt ∼ N (μc, σ
2
c ) and It ∼ T N (μI , σ

2
I ), if the

intervention is always positive (It > 0), the distribution is truncated normal. In this

case, Pt is a random walk with drift.

Pt =
[
φ1ψ2{(φ2μI + μc) + μI}

]
t+ ψ1

t∑
τ=1

ΔRτ + ψ2

t∑
τ=1

Xτ , (3.7)

E [ΔPt] = φ1ψ2{(φ2μI + μc) + μI}
= β2μI + ψ2φ1μc . (3.8)

In this case, the effect of intervention can be interpreted by its influence on the deter-

ministic linear trend E [ΔPt]t. Since there are days with and without intervention in

practice, we must consider a Tobit model or 0 < Pr(It = 0) = 1 − p < 1. If we assume

It is independent of ut, then

E [ΔPt] = (β2μI + ψ2φ1μc)p + (ψ2φ1μc)(1− p)

= α1p+ α0(1− p) , (3.9)

we attempt to measure changes in the trend with ATE or α = α1 − α0 = β2μI .

The marginal effect at t is given by β2. If selling causes the yen to depreciate, β2 is

negative. We define the efficacy of intervention in some period (t = 1, ..., T ) as follows:

α < 0 , α1 < 0 . (3.10)

If β2μI < −ψ2φ1μc or α1 < 0, intervention launches a trend α1t of depreciating exchange

rates, then intervention is strongly effective.

When estimating β2 and α, the ultimate issue is endogeneity of the intervention. In

other words, the amount of intervention It and the error term ut in equation (3.6) are

likely correlated.

Cor[It, ut] �= 0 . (3.11)

In this case, the regression analysis contains bias.

Endogeneity occurs for several reasons. If we assume φ2 in equation (3.5) approaches

0, then ut ∝ Ct. However, other order flows Ct and intervention It conceivably are

correlated (Girardin and Lyons, (2008)), causing omitted variable bias because Ct is

unobserved. In their examination of intra-day trading, Chen et al. (2012) demonstrated

the presence of endogeneity by aggregating hourly data, and OLS estimator suffered

aggregation bias. Ito (2003) doubted whether It is an exogenous variable. Japan’s

intervention in the 2003-2004 period was large and continuous. Authorities presumably

observed movements in exchange rates the day before intervening, and their response
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function incorporated whether and to what extent they should intervene. This situation

yields two simultaneous equations and generates simultaneous equation bias.

Although we cannot measure the effects of order flow because we lack data for Ct,

this section demonstrated what is the parameter of interest. The next section considers

endogeneity in standard simultaneous equation models and verifies whether it is present.

4 Statistical inference of simultaneous equation Tobit model

4.1 The FIML estimator and test statistics for endogeneity

This section presents two structural equations for periods (t = 1, ..., T ) adopting econo-

metric notations.

y
(1)∗
t = β1y

(2)
t + γ′

1z
(1)
t + u

(1)
t , (4.12)

y
(1)
t =

⎧⎨
⎩y

(1)∗
t if y

(1)∗
t > 0 ,

0 if y
(1)∗
t ≤ 0 .

(4.13)

y
(2)
t = β2y

(1)
t + γ′

2z
(2)
t + u

(2)
t , (4.14)

where there are two endogenous variables y
(1)
t = It, which is the yen-selling (dollar-

buying) volume, and y
(2)
t = ΔPt, which is the change in the dollar-yen exchange

rate. (z
(1)
t , z

(2)
t ) denotes instrumental variable vectors. For example, the constant,

which is the drift term, and the difference between US and Japanese interest rates

ΔRt = Δ(i∗t − it) are considered exogenous variables. Therefore, (z
(1)
t , z

(2)
t ) are subsets

of zt = ( 1, ΔRt, It−1, ΔPt−1, It−2, ΔPt−2, ...), which includes the exogenous and pre-

determined variables. Thus, we have extended the model because coefficients of lagged

dependent variables might not be zero.

The first structural equations—(4.12) and (4.13)—are the authorities’ response func-

tions. Intervention allows the possibility of responding with exchange rate variation y
(2)
t

in the current day. Positive intervention is observed only when latent variable y
(1)∗
t ex-

ceeds the threshold. However, during the examined period, intervention involved only

selling yen; therefore, this formulation holds. The second structural equation (4.14)

is the response function of foreign exchange markets, which is not influenced on days

(y
(1)
t = 0) during which no intervention occurred. Figure 3 shows relationships of the

endogenous variables when instrumental variables are givens. β2 corresponds to the to-

tal intervention effect. Noting that this is the dollar-yen exchange rate, authorities sell

more yen when it appreciates, and the expected sign of β1 is positive. Conversely, the

expected sign of β2 is negative when selling causes the yen to depreciate.

The equilibrium point or observable reduced form in Figure 3 exists if condition (1−
β1β2) > 0 holds as given by the following (Nelson and Olson, (1978)).

y
(1)
t = (π′

1zt + v
(1)
t )wt , (4.15)

y
(2)
t = (π′

2zt + v
(2)
t )wt + (γ′

2z
(2)
t + u

(2)
t )(1 −wt) , (4.16)
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Fig. 3: Simultaneous equation Tobit model

where, if we use the selection matrix J(1) and J(2) and express instrumental variable

vectors as z
(1)
t = J(1)zt and z

(2)
t = J(2)zt, the reduced coefficients and error terms

vt = (v
(1)
t , v

(2)
t )′ are given by

B =

[
1 −β1

−β2 1

]
,

[
π′
1

π′
2

]
= B−1

[
γ′
1J

(1)

γ′
2J

(2)

]
, vt = B−1

[
u
(1)
t

u
(2)
t

]
. (4.17)

In addition, wt is wt = 1I{y(1)∗t > 0} = 1I{π′
1zt + v

(1)
t > 0}, an indicator function whose

value is 1 if the argument is true and 0 otherwise. Depending on whether intervention

occurs (wt = 1) or not (wt = 0), the reduced form becomes a switching regression

model. This is a special form of the simultaneous equation Tobit model proposed by

Amemiya (1974). Amemiya (1974) discovered that as it has simultaneous inequalities,

the precondition for existence of the equilibrium is |B| = (1−β1β2) > 0, which is termed

the coherence condition. This condition is met as indicated by the expected signs.

Intervention does not occur daily (Figure 2). In other words, the endogenous variable

y
(1)
t is censored at 0 in this Tobit model, and selection bias arises in the OLS estimation.

The is also a simultaneous equation model. Even if we analyze the equilibrium point in

Figure 3, its regression line is neither the first nor the second structural equation.

The FIML estimator derived from the simultaneous estimation of the two structural

equations is defined by Amemiya (1974) and is the efficient estimator. Denoting the

(y
(1)∗
t , y

(2)
t ) density function as f and the (u

(1)
t , u

(2)
t ) density function as g, where the

bivariate normal distribution follows that (u
(1)
t , u

(2)
t )′ ∼ N (0,Σ),Σ = (σ21 , σ12;σ12, σ

2
2).
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Then the likelihood function for period t is given by

lt =
[
f(y

(1)
t , y

(2)
t )

]wt
[ ∫ 0

−∞
f(y(1)∗, y(2)t )dy(1)∗

](1−wt)

=
[
(1− β1β2) g(y

(1)
t − β1y

(2)
t − γ′

1z
(1)
t , y

(2)
t − β2y

(1)
t − γ′

2z
(2)
t )

]wt

×
[ ∫ −β1y

(2)
t −γ ′

1z
(1)
t

−∞
g(u(1), y

(2)
t − γ ′

2z
(2)
t )du(1)

](1−wt)

. (4.18)

According to Maddala (1983, Ch. 7), the second structural equation (4.14) is always

identified. However, the first structural equation (4.12) requires the usual exclusion

conditions in linear simultaneous equation models. For instrumental variables absent in

the first structural equation, Cor[It,ΔRt] = 0 if intervention is theoretically sterilized.

Therefore, we considered an exclusion condition, such as differences in Japanese and

US interest rates. The likelihood function for the FIML estimation is represented as an

integral, which needs adjustment to maximize the function. We used a representation

involving only a univariate standard normal distribution with orthogonal transformation.

The Appendix provides the specific likelihood function and its derivation.

We assumed intervention volume and exchange rates are determined simultaneously

by equations (4.12) and (4.14). In this case, y
(1)
t and y

(2)
t generally correlate with the

error terms in the structural equations. However, parameter values may weaken the cor-

relation and require testing. For instance, if y
(1)∗
t could be observed, a triangular system

(β1 = 0) and σ12 = 0, then we have Cor[y(1)∗t , u
(2)
t ] = 0 with no endogeneity. In such

cases, equation (4.12) can be consistently estimated with a standard Tobit estimation

or equation (4.14) via OLS. The null hypothesis asserts that no endogeneity exists. In

the first structural equation, it is denoted as H
(1)
0 : E [y(2)t u

(1)
t ] = 0, and for the second

structural equation it is denoted as H
(2)
0 : E [y(1)t u

(2)
t ] = 0. The specification test for en-

dogeneity employs a residual regression based on Hausman (1978) or Wooldridge (2006,

Ch. 6). However, it cannot be applied to our reduced form in which the endogenous

variable is censored. We thus propose these test statistics as sample analogues for the

null hypotheses:

z(1) =
1√
T σ̂(1)

T∑
t=1

(β̂2y
(1)
t û

(1)
t + σ̂12)

d−→ N (0, 1) , (4.19)

z(2) =
1√
T σ̂(2)

T∑
t=1

y
(1)
t û

(2)
t

d−→ N (0, 1) . (4.20)

See the Appendix for the derivation. Under the null hypotheses, these z statistics follow

a standard normal distribution. We use a two-sided test.
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4.2 ATE and VTE of simultaneous equation Tobit model

Recent studies, including Fatum and Hutchinson’s (2010), measure ATE in models

evaluating intervention policies. Our model considers two issues not commonly ad-

dressed.

In a time series analysis, the causal effect of a policy intervention is defined as

y
(2)
t = y

(2)
1t wt + y

(2)
0t (1− wt) , (4.21)

where y
(2)
1t and y

(2)
0t are policy responses when intervention occurred and when it did

not, respectively. One can be observed; the other is counterfactual. For more general

formulation, see Jordà and Taylor (2013) and Hsiao et al. (2012). We first note that the

reduced form (4.16) has the same value as equation (4.21). In other words, it is given

by

y
(2)
1t = π′

2zt + v
(2)
t , y

(2)
0t = γ ′

2z
(2)
t + u

(2)
t . (4.22)

The first issue is the problem that arises in estimating ATE: policy wt = 1I{π′
1zt +

v
(1)
t > 0} is also an endogenous variable. Rosenbaum and Rubin’s (1983) general as-

sumption of conditional independence underlies approaches such as propensity score

matching. (y
(2)
1t , y

(2)
0t , wt) also depends on error terms (v

(1)
t , v

(2)
t ), so this assumption is

not satisfied. However, ATE is easily estimated using the reduced form since it is solved

by instrumental variables and error terms.

ATE = E
[
y
(2)
1t − y

(2)
0t

]
= E

[
y
(2)
1t

]
− E

[
y
(2)
0t

]
= α1 − α0

= π′
2E [zt]− γ ′

2E [z
(2)
t ] . (4.23)

Given the stationarity of zt, we can make a consistent estimator using the sample average

z̄t = (1/T )
∑T

t=1 zt.

Moreover, the model includes the latent variable y
(1)∗
t < 0 in equation (4.13). The

second issue is that ATE is not necessarily an appropriate assessment criterion. The

Appendix derives the following useful alternative representation for ATE.

y
(2)
1t − y

(2)
0t = β2(π

′
1zt + v

(1)
t ) , (4.24)

E
[
y
(2)
1t − y

(2)
0t

]
= β2E

[
y
(1)∗
t 1I{y(1)∗t > 0}+ 1

1− β1β2
y
(1)∗
t 1I{y(1)∗t ≤ 0}

]

= β2E
[
y
(1)
t 1I{y(1)∗t > 0}

]
+

β2
1− β1β2

E
[
y
(1)∗
t 1I{y(1)∗t < 0}

]
,(4.25)

where y
(1)∗
t < 0 is a hypothetical yen-buying intervention. If β2 < 0, either buying or

selling yen would be effective, i.e., each term of (4.25) is not zero, but ATE cancels both

out by virtue of its averaging. Therefore, ATE may lead to underestimating the efficacy
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of yen-selling. This is similar to the discussion of the monotonicity of LATE in Imbens

and Angrist (1994). Hypothetical yen-buying intervention y
(1)∗
t in the negative region

of Figure 1 was never realized during the examined period, and it was substituted by

y
(1)
t = 0 in the case of no intervention. Thus, ATE is unsuitable.

We must extract the effect of yen-selling where intervention volume is positive in

(4.25). Following Wooldridge (2006, Ch. 18), we address this situation using the av-

erage treatment effect (ATE1: ATE on the treated) when the policy is implemented.

This approach has been emphasized in recent years. From equations (4.15) and (4.25),

ATE1=α·1 is the following:

ATE1 = E
[
y
(2)
1t − y

(2)
0t

∣∣∣wt = 1
]

= α1·1 − α0·1
= β2E

[
y
(1)
t

∣∣∣wt = 1
]
. (4.26)

Consistent estimation is easily achieved with α̂·1 = (β̂2
∑

t y
(1)
t wt)/

∑
t wt. In addition,

the exchange rate deterministic trend E[y
(2)
0t |wt = 1]t = α0·1t in the case where no

intervention occurred even on the day of intervention, which is of more interest, is

expressed as follows:

α0·1 = E
[
γ′
2z

(2)
t +

σ12 + β1σ
2
2

(1− β1β2)ω1

φ(π′
1zt)

Φ(π′
1zt)

∣∣∣wt = 1

]
. (4.27)

Although it is possible to estimate α0·1 from the above sample analogue, a simple method

is available. α1·1 = E [y(2)1t |wt = 1] can be considered as α̂1·1 =
∑

t y
(2)
t wt/

∑
t wt. Calcu-

lating backward from α̂·1, we obtain

α̂0·1 = α̂1·1 − α̂·1 . (4.28)

If α0·1 is positive, yen-selling will cancel the trend of appreciation. It can be interpreted

as a policy of “leaning against the wind.” If negative, policy of “leaning with the wind”

augments the appreciation. The Appendix shows the derivation of the t-test statistic for

the null hypothesis H0 : α·1 = α1·1 − α0·1 = 0 using the delta method.

As our second concern, we validate the volatility of changes in exchange rates. Tradi-

tionally, this situation would suit GARCH estimation. Here, we proposes the following

framework for evaluating policy.

VTE = Var
[
y
(2)
1t

]
− Var

[
y
(2)
0t

]
. (4.29)

In other words this measure compares the difference in variances due to the treatment.

We term this VTE. Note that VTE differs from the variance of treatment effect Var[y(2)1t −
y
(2)
0t ], i.e.,

Var
[
y
(2)
1t − y

(2)
0t

]
= Var

[
y
(2)
1t

]
− 2Cov

[
y
(2)
1t , y

(2)
0t

]
+ Var

[
y
(2)
0t

]
. (4.30)

Similar to ATE1, we propose VTE1 (VTE on the treated) as follows:

VTE1 = σ21·1 − σ20·1 , (4.31)
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where, σ21·1 = Var[y(2)1t |wt = 1] and σ20·1 = Var[y(2)0t |wt = 1]. Hence, if VTE1 is negative,

variance would decline using the case of no intervention as a benchmark. From equations

(4.24) and Var[y(2)1t |wt = 1] = Var[y(2)t |wt = 1], we have the relation

σ21·1 = β22Var
[
y
(1)
t

∣∣∣wt = 1
]
+ 2β2Cov

[
y
(1)
t , y

(2)
0t

∣∣∣wt = 1
]
+ σ20·1 , (4.32)

where the first term is the volatility caused by intervention itself and the second term is

the effect of a policy of “leaning against the wind.” The expected sign of VTE1 depends

on whether the first or the second term of equation (4.32) is larger and is therefore not

trivial. The VTE1 estimator and t-test statistic for the null hypothesis H0 : σ21·1 = σ20·1
are in the Appendix.

5 Empirical analysis

5.1 Model of analysis

For explanatory variables in this analysis, we consulted the studies by Ito (2003) and

Evans and Lyons (2002). Specification of the two structural equations is as follows:

I∗t = β1ΔPt + γ10 + γ11ΔPt−1 + γ12ΔPt−2 + γ13It−1

+ γ14It−2 + γ15ΔPt−3:7 + γ16ΔPt−8:30 + u
(1)
t , (5.33)

It =

⎧⎨
⎩I

∗
t if I∗t > 0 ,

0 if I∗t ≤ 0 .
(5.34)

ΔPt = β2It + γ20 + γ21ΔRt + γ22ΔPt−1 + γ23ΔPt−2

+ γ24It−1 + γ25It−2 + γ26It−7 + γ27It−30 + u
(2)
t , (5.35)

where It is yen-selling/dollar-buying volume (trillion yen) at period t, and ΔPt = (Pt −
Pt−1) × 100 is the difference in the logarithm of the exchange rate (i.e., approximately

the percentage change in the dollar-yen exchange rate on the New York Stock Exchange

(NYSE)).

New York

Tokyo

cloesd

open

open

closed

cloesd

ΔPt

It

It

period t

Fig. 4: Definition of period t
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We are focused on the simultaneity of y
(1)
t = It and y

(2)
t = ΔPt during period t, so

period t must be defined. Figure 4 defines it as the period spanning the end of trading

on one day to the end of trading the next. Hence, intervention volume It is treated as

the total amount of intervention during this period in New York, Tokyo, and elsewhere.

Other variables are instrumental variables. ΔRt = Δ(i∗t − it) is the difference between
US and Japanese interest rates (US O/N−Japanese O/N). Concerning the predetermined

variables in the authorities’ response function (5.33), ΔPt−s:u = (Pt−s − Pt−u) × 100

represents the cumulative percentage change from three to seven days prior or from

eight to thirty days prior. During numerical simulation, small interventions occurred

almost daily but only with the first- and second-order lagged variables. This finding is

inconsistent with Figure 2. Therefore, we included these variables ΔPt−s:u under the

assumption that authorities consider medium-term changes in exchange rates.

5.2 Results of estimation and tests

The estimation employs daily data from January 1, 2003, to April 28, 2004. There

were 55 interventions during the earlier period and 74 during the latter. Exogenous

factors strongly influenced exchange rate variations from September 19-22, 2003, so we

omitted this period from analysis. The test statistic for structural changes was q = 36.9,

and 31.4 at the 95% level of χ2(20); therefore, the null hypothesis was rejected at 5%

significance1. Hence, we divided the results of the FIML estimation (θ̂03, θ̂04) into the

earlier and later periods (Table 1). The coherence conditions (1 − β̂1β̂2) > 0 were

also satisfied, indicating that the simultaneous equation Tobit model holds. Tests for

endogeneity revealed z(1) = −0.01 and z(2) = 2.37 for the earlier period and z(1) = 0.07

and z(2) = 1.44 for the later period. We conclude there is no endogeneity in the first

structural equation, and the endogeneity exists in the second structural equation for the

earlier period, thus necessitating FIML estimation.

First, the crucial result is the total effect β2 of intervention in the second structural

equation. The sign of the intra-day influence of foreign exchange intervention is negative,

as expected. Further, it is the most significant of all coefficients for both periods, with

the magnitude of the coefficients being maximum compared with the intervention effect

leading up to the prior day. In light of the estimated coefficients, the effect of a one

trillion yen intervention in the earlier period is a depreciation in the yen’s value of

about 1.6% (1.0% in the later period). As the exchange rate at the time was one

dollar to approximately 100 yen, Figure 2 reveals that selling one trillion yen induced a

depreciation exceeding one yen.

Regarding the influence of endogeneity, the sign of statistic z(2) allows us to predict

an upward bias in the OLS estimation. In practice, estimating the second structural

equation using OLS yields β̃2 = −0.52 for the earlier period and β̃2 = −0.43 for the

later period. In contrast, the FIML estimated values are β̂2 = −1.59 and β̂2 = −1.05

1Derivation of the test statistic for structural changes is in the Appendix.
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Table 1: FIML estimation results

’03/1/1 ∼ ’03/9/18 ’03/9/23 ∼ ’04/4/28

Dep. var.= It Dep. var.= ΔPt Dep. var.= It Dep. var.= ΔPt

ΔPt 0.21 0.16

(0.29) (0.39)

It −1.59∗∗∗ −1.05∗∗∗

(−3.69) (−2.59)

const. −0.49 0.10∗∗ −0.22∗ 0.13∗

(−1.02) (2.06) (−1.78) (1.77)

ΔRt −0.14 0.48

(−0.24) (0.32)

ΔPt−1 0.36 −0.06 0.17∗ 0.07

(1.00) (−0.78) (1.93) (0.80)

ΔPt−2 0.22 0.12 −0.04 −0.16∗

(1.43) (1.56) (−0.47) (−1.84)

It−1 0.83 0.38 0.67∗∗∗ 0.56∗∗

(1.36) (1.37) (4.10) (2.45)

It−2 0.68∗ 0.66∗∗ 0.29 −0.06

(1.84) (2.34) (1.57) (−0.31)

ΔPt−3:7 0.16 −0.04

(1.22) (−1.08)

ΔPt−8:30 0.06 −0.01

(1.01) (−0.45)

It−7 −0.66∗∗ 0.17

(−2.36) (1.14)

It−30 −0.18 −0.38∗∗

(−0.58) (−2.40)

σ1, σ2 0.36 0.49∗∗∗ 0.45∗∗∗ 0.55∗∗∗

(1.45) (15.5) (3.42) (13.1)

σ12 0.05 0.05

(0.49) (0.44)

ATE1 −0.385∗∗∗ −0.309∗∗

(−3.758) (−2.283)

α̂1·1, α̂0·1 0.002 0.387 0.018 0.327

VTE1 −0.074 −0.116

(−0.381) (−0.517)

obs. 187 157

1− β̂1β̂2 1.33 1.02

z(1), z(2) −0.01 2.38 −0.50 1.35

R2
(1), R

2
(2) 0.42 0.08 0.25 0.06

1) t-values are shown in parentheses. ***, **, and * indicate significance at the 1%, 5%, and

10% levels, respectively.

2) The instrumental variables that do not appear in the first structural equation are

ΔRt, It−7, It−30.
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for the earlier and later periods, respectively, which are two to three times greater than

the OLS estimates. Chen et al. (2012) and Kearns and Rigobon (2005) examined the

period up to 2002, estimating an intervention effect of approximately 1.7% and 1.5%,

respectively, and demonstrating OLS estimation results more than two times greater due

to the influence of endogeneity. Although time periods differ, the similarity in results is

noteworthy.

Examining other variables in the second structural equation reveals that the differ-

ence in US-Japanese interest rates is not significant. This result might be an effect

of zero interest rate policies. Based on the theory of price formation via order flow,

only intervention volume on that day can have an impact. However, during this pe-

riod, intervention volume one or two days prior shows positive significance. This can be

interpreted as movement resulting from selling yen. For example, dealers who carried

a sell yen/buy dollars position over to the next day may have been taking profits. In

other words, foreign exchange intervention might not affect exchange rates uniformly.

Subsequent profit-taking by dealers who create overnight positions in anticipation of

intervention-induced order flow can produce market movements opposite to those pro-

duced by intervention.

The coefficients of determination R2
(2) are nearly 02. Exchange rates cannot be pre-

dicted from percentage changes and interventions the previous day; they are almost

completely explained by order flows during the period t. As concerns the trend or ATE1

when intervention does occur, intervention on the period t had a large influence. As

we have α̂1·1 = 0.002(%) in the earlier period and α̂1·1 = 0.018(%) in the later period,

therefore intervention was not strongly effective (α̂1·1 > 0) but the trend in the yen’s

appreciation on intervention days is almost zero.

For example, in Figure 2, the daily average percentage change during 111 days between

September 2003-February 2004 is approximately 0.042%, taking the yen from 110 per 1

dollar to 105 (	 110 × (1 − 0.00042)111). According to estimation results, if there had

been no intervention, α̂0·1 would be 0.387% and 0.327% for the earlier and later periods,

respectively. In other words, on days of intervention, the yen showed strong appreciation

that was almost completely offset. It was not completely offset in the later period, but

the yen’s strengthening slowed considerably. Thus intervention was effective (α̂·1 < 0).

Considering the standard deviation of volatility, it was (σ̂1·1, σ̂0·1) = (0.33, 0.43) in the

earlier period and (σ̂1·1, σ̂0·1) = (0.45, 0.57) in the later period. It did decline due to

intervention, but there is no significant difference from the t-value for VTE1, indicating

no accompanying reduction in volatility.

Furthermore, in the first structural equation—the authorities’ response function—

coefficients of determination are somewhat large. Thus, it can be deemed a response

equation, which to some extent allows predicting an intervention from information up to

the previous day. A noteworthy result is that β1 does not differ significantly from zero

for both earlier and later periods, indicating we cannot statistically infer that authori-

2Derivation of coefficients of determination is provided in the Appendix.
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ties set intervention volume in response to currency movements at period t. Therefore,

the simultaneous equation Tobit model can be deemed a triangular system3. Japanese

authorities’ response function was autonomous at that time, so it nearly equals the es-

timation results in Ito’s (2003) response function. Considering the characteristics of the

dynamic Tobit model, if the latent variables y
(1)∗
t = I∗t for the previous and preceding

days increase and authorities decide to intervene, steps will be taken to intervene irre-

spective of currency fluctuations during period t. This can somewhat be interpreted as

continuous intervention, which is consistent with the intervention movements in Figure

2.

6 Conclusions

This study examined the efficacy of Japan’s large-scale currency interventions between

January 2003 and March 2004. Based on FIML estimator with ATE in a simultaneous

equations Tobit model, we analyzed why interventions can be effective by considering

their effects on exchange rates as their influence of an average trend. We considered

these effects from two aspects based on structural estimation and used trend analysis

for the estimation period based on a formulation of policy evaluation.

Our empirical results indicated that buying dollars equivalent to one trillion yen could

induce a same-day depreciation exceeding 1% in the yen. These results suggested that

intervention is an endogenous variable, however setting the volume of intervention is

based on the variables of previous days. ATE1 analysis revealed that intervention policy

was almost completely offset by appreciation in the yen on the days of intervention.

Because results indicated no influence of changes in exchange rates on volatility, we con-

clude that the primary objective of intervention was oriented toward the average trend.

Consequently, the yen continued to appreciate during the period examined. Compared

with a non-intervention policy, however, the pace of its increase slowed considerably.

Thus, we conclude that Japan’s intervention during the period examined was effective.
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Appendix

Derivation of likelihood function: We express the likelihood function equation

(4.18) by using the cumulative distribution function of univariate normal distribution.

The calculation for maximization is based on Ox (Doornik, 2002). The likelihood func-

tion for period t is as follows:

lt =

[
(1− β1β2)

(2π)
2
2 |Σ| 12

exp

(
−1

2
u′
1tΣ

−1u1t

) ]wt [ ∫ u1t

−∞
g
(
u(1), u

(2)
t

)
du(1)

](1−wt)

,(A.1)

where u1t = (y
(1)
t − β1y

(2)
t − γ′

1z
(1)
t , y

(2)
t − β2y

(1)
t − γ ′

2z
(2)
t )′ and u1t = −β1y(2)t − γ′

1z
(1)
t .

Consider the following orthogonal transformation of error terms:

y
(1)∗
t = β1y

(2)
t + γ′

1z
(1)
t−1 +

σ12
σ22

u
(2)
t + (u

(1)
t − σ12

σ22
u
(2)
t ) , (A.2)

where, for u
(1)∗
t = u

(1)
t − (σ12/σ

2
2)u

(2)
t , we have Cov[u(1)∗t , u

(2)
t ] = 0; therefore, u

(1)∗
t

is independent of u
(2)
t . The Jacobian determinant of the variable transformation from

(u
(1)
t , u

(2)
t ) to (u

(1)∗
t , u

(2)
t ) is 1. Therefore, the second term of (A.1) can be rewritten as

follows:

∫ u1t−σ12
σ2
2
u
(2)
t

−∞
g(u(1)∗, u(2)t )du(1)∗ =

( ∫ (u1t−σ12
σ2
2
u2t)/σ∗

−∞
φ(
u(1)∗

σ∗
) d(

u(1)∗

σ∗
)

)
1

σ2
φ

(
u2t
σ2

)

= Φ

(
u1t − σ12

σ2
2
u2t

σ∗

)
× 1√

2πσ2
exp(− u22t

2σ22
) ,
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where u2t = y
(2)
t − γ′

2z
(2)
t and σ2∗ = σ21 − (σ212/σ

2
2) . From the above, if (1 − β1β2) > 0,

the log-likelihood function logL =
∑

t log lt is as follows:

logL =

T∑
t=1

wt

[
log(1− β1β2)− log 2π − log |Σ| 12 − 1

2
u′
1tΣ

−1u1t

]

+ (1−wt)

[
log Φ

(
u1t − σ12

σ2
2
u2t

σ∗

)
− log

√
2π − log σ2 −

u22t
2σ22

]
. (A.3)

Derivations of statistics for endogeneity: We derive equations (4.19) and (4.20).

The structural equations are expressed as follows:

y
(1)∗
t = β1y

(2)
t + γ ′

1z
(1)
t + u

(1)
t = θ′

1x
(1)
t + u

(1)
t , (A.4)

y
(2)
t = β2y

(1)
t + γ ′

2z
(2)
t + u

(2)
t = θ′

2x
(2)
t + u

(2)
t . (A.5)

First, we consider the test statistic (4.20) of the second structural equation. Let the

residuals be û
(2)
t = y

(2)
t − θ̂

′
2x

(2)
t , where θ̂2 is the FIML estimator for (β2,γ

′
2)

′.

1√
T

∑
t

y
(1)
t û

(2)
t =

1√
T

∑
t

y
(1)
t u

(2)
t −

[
1

T

∑
t

y
(1)
t x

(2)′
t

]
√
T (θ̂2 − θ2) . (A.6)

Further, consider the asymptotic linear approximation of
√
T (θ̂2 − θ2). We represent

the log-likelihood function as l(θ) =
∑

t lt(θ), where θ = (θ′
1,θ

′
2, σ1, σ2, σ12)

′ is a ((p1 +

p2 + 3)× 1) vector. If st = st(θ) = ∂lt(θ)/∂θ is the score function, from the discussions

of the maximum likelihood method, we have

√
T (θ̂ − θ) = −H−1

[
1√
T

∑
t

st

]
+ op(1) , (A.7)

where H = (1/T )
∑

tHt(θ) is the Hessian matrix. If the selection matrix J2 is J2θ = θ2,

then since
√
T (θ̂2 − θ2) =

√
TJ2(θ̂ − θ), (A.6) becomes

1√
T

∑
t

y
(1)
t u

(2)
t +m′

2T

[
1√
T

∑
t

st

]
+ op(1) , (A.8)

where it holds that m′
2T = m′

2T (θ) = [(1/T )
∑

t y
(1)
t x

(2)′
t ]J2H

−1. Denoting its probabil-

ity limit as m2, under the null hypothesis, the following holds:

1√
T

∑
t

y
(1)
t û

(2)
t =

1√
T

∑
t

(y
(1)
t u

(2)
t +m′

2st) + op(1) (A.9)

d−→ N (0, σ2(2)) , (A.10)
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where we have σ2(2) = E [(y(1)t u
(2)
t +m′

2st)
2]. Considering this consistent estimator σ̂2(2) =

(1/T )
∑

t(y
(1)
t û

(2)
t +m′

2T (θ̂)st(θ̂))
2 and normalizing yields equation (4.20).

Next, we consider the test statistic (4.19) for the first structural equation. From

structural equation (4.14), we obtain E [y(2)t u
(1)
t ] = β2E [y(1)t u

(1)
t ] + σ12. Noting that

y
(1)
t u

(1)
t = y

(1)
t (y

(1)
t − θ′

1x
(1)
t )wt, the residuals are expressed as û

(1)
t = (y

(1)
t − θ̂

′
1x

(1)
t )wt.

Thus, the following expression is obtained:
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∑
t

(β2y
(1)
t u

(1)
t + σ12)− μ′

1TJ1

√
T (θ̂ − θ) + op(1) , (A.13)

where the third term of equation (A.12) is asymptotically negligible. Furthermore,

μ1T = μ1T (β2, u
(1)
t ) is a ((p1 +1+ 1)× 1) vector, and J1 is a selection matrix such that

(θ′
1, β2, σ12)

′ = J1θ. Similar to equations (A.8) and (A.9), under the hypothesis H
(1)
0 ,

the following holds:

1√
T

∑
t

(β̂2y
(1)
t û

(1)
t + σ̂12) =

1√
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∑
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(β2y
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1st) + op(1)

d−→ N (0, σ2(1)) , (A.14)

where m′
1 is the probability limit of m′

1T (θ) = μ′
1TJ1H

−1, with σ2(1) = E [(β2y(1)t u
(1)
t +

σ12 +m′
1st)

2]. This consistent estimator is

σ̂2(1) =
1
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∑
t

(β̂2y
(1)
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(1)
t + σ̂12 +m′

1T (θ̂)st(θ̂))
2 , (A.15)

where m′
1T (θ̂) = μ̂′

1TJ1H
−1 and μ̂1T = μ1T (β̂2, û

(1)
t ). By normalizing, we obtain equa-

tion (4.19).

Derivations of ATE1 and VTE1’s statistics: First, we consider equations (4.24)
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and (4.25). From the relationship with equation (4.17), u
(2)
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(1)∗
t is negative. Hence,

π′
1zt + u

(1)
t = (π′

1zt + u
(1)
t )wt + (π′

1zt + u
(1)
t )(1− wt)

= y
(1)
t wt +

1

1− β1β2
y
(1)∗
t (1− wt) .

Next, we consider the t-test of equation (4.26). Let a 3×1 vector be θ3 = (β2, μ1, p1)
′,

where μ1 = E [y(1)t ] and p1 = E [wt]. From the consistent estimators μ̂1 = (1/T )
∑

t y
(1)
t

and p̂1 = (1/T )
∑

t wt and the result of equation (A.9), we have
√
T (θ̂3 − θ3)

d→
N (0,V3). The consistent estimator of this asymptotic covariance matrix is given as

follows:

V̂3 =
1

T

∑
t

e3te
′
3t , e′3t = (ε̂t, y

(1)
t − μ̂1, wt − p̂1) , (A.16)

where ε̂t = −e′2H−1st, and e2 is a selection vector set to β2 = e′2θ. As α̂·1 = (β̂2μ̂1)/p̂1,

we evaluate it using the delta method. For f(θ3) = (θ1θ2)/θ3, we have that f(θ3) =

∂f(θ3)/∂θ3 = (θ2/θ3, θ1/θ3,−(θ1θ2)/θ
2
3)

′. Because we know f(θ3) �= 0 from μ1/p1 �= 0,

the distribution is not degenerate. Therefore the t-test statistic for the null hypothesis

H0 :f(θ3) = 0 is given by

t =

√
Tf(θ̂3)√

f ′(θ̂3)V̂3f(θ̂3)
. (A.17)

Further, let us represent the α01 of equation (4.27). α0·1 = E [E [γ ′
2z

(2)
t + u

(2)
t |zt, wt =

1]|wt = 1]; therefore, considering the discussion in Maddala (1983, Appendix), we have

E [γ ′
2z

(2)
t + u

(2)
t |zt, wt = 1] = γ′

2z
(2)
t − E [v(1)t u

(2)
t ]

ω2
1

ω1E
[
−v(1)t

ω1

∣∣∣−v(1)t

ω1
<

π′
1zt
ω1

]

= γ′
2z

(2)
t +

σ12 + β1σ
2
2

(1− β1β2)ω1

φ(π′
1zt)

Φ(π′
1zt)

,

where ω2
1 = Var[v(1)t ], Φ and φ represent the standard normal cumulative distribution

function and its density function, respectively, and we use the relations that E [u(2)t | −
v
(1)
t ] = −(E [v(1)t u

(2)
t ]/ω2

1)(−v
(1)
t ) and E [v(1)t u

(2)
t ] = (σ12 + β1σ

2
2)/(1− β1β2).
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Finally, we derive the VTE1 estimator of equation (4.31). From the relationships with

Var[y(2)1t |wt = 1] = Var[y(2)t |wt = 1] and Var[y(2)t |wt = 1] = E [y(2)2t |wt = 1]−(E [y(2)t |wt =

1])2, we obtain

σ̂21·1 =
1∑
t wt

∑
t

y
(2)2
t wt − (α̂1·1)2 . (A.18)

From equation (4.24), Var[y(2)0t |wt = 1] = Var[y(2)t − β2y
(1)
t |wt = 1], so that

σ̂20·1 =
1∑
t wt

∑
t

(y
(2)
t − β̂2y

(1)
t )2wt − (α̂0·1)2 . (A.19)

Therefore, we obtain the VTE1 consistent estimator (σ̂21·1− σ̂20·1). Next, we consider the
t-value. VTE1 is also expressed as follows:

σ̂21·1 − σ̂20·1 = 2β̂2

[
m̂12

p̂1
− μ̂1
p̂1

μ̂2
p̂1

]
− β̂22

[
m̂2

1

p̂1
−
(
μ̂1
p̂1

)2
]
, (A.20)

where m̂2
1 = (1/T )

∑
t y

(1)2
t , m̂12 = (1/T )

∑
t y

(1)
t y

(2)
t , and μ̂2 = (1/T )

∑
t y

(2)
t wt. Hence,

we evaluate using the delta method. We set up a 6×1 vector θ4 = (β2, μ1, p1,m
2
1,m12, μ2),

where m2
1 = E [y(1)2t ], m12 = E [y(1)t y

(2)
t ], and μ2 = E [y(2)t wt]. For g(θ4) = 2θ1[θ5/θ3 −

θ2θ6/θ
2
3]− θ21[θ4/θ3 − (θ2/θ3)

2], g(θ4) = ∂g(θ4)/∂θ4 becomes the following:

g(θ4) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(θ5 − θ1θ4)θ
−1
3 − 2(θ1θ

2
2 − θ2θ6)θ

−2
3

2(θ21θ2 − θ1θ6)θ
−2
3

(θ21θ4 − 2θ1θ5)θ
−2
3 − 2(θ21θ

2
2 − 2θ1θ2θ6)θ

−3
3

−θ21θ−1
3

2θ1θ
−1
3

−2θ1θ2θ
−2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.21)

The estimator corresponding to equation (A.16) is V̂4 = (1/T )
∑

t e4te
′
4t, where e′4t =

(e′3t, y
(1)2
t − m̂2

1, y
(1)
t y

(2)
t − m̂12, y

(2)
t wt − μ̂2). Under a sufficient condition β2 �= 0 for

g(θ4) �= 0, the t-test statstic is given by t =
√
Tg(θ̂4)/[g

′(θ̂4)V̂4g(θ̂4)]
1/2.

Derivations of the test statistic for structural changes: The sample used herein

comprises daily data from January 1, 2003 to April 28, 2004. As the G7 meeting was

scheduled for September 20, 2003, tripartite meetings of officials from Japan, Germany,

and the US were held through the preceding day. In this meeting, negative opinions

were expressed concerning Japanese frequent interventions, and as shown in Figure 2,

the market response comprised a sharp appreciation of the yen. Thus, there were strong

exogenous factors for exchange rate fluctuations from September 19 to September 22,

2003. Therefore, we excluded this period from the analysis and there may have been

structural changes before and after this period.
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We denote the structural parameters (β1, β2,γ1,γ2,Σ) for the previous period as a

K×1 vector θ03 and for the succeeding period, similarly, as θ04. We also express the null

hypothesis H0 : θ03 = θ04 as R(θ′
03,θ

′
04)

′ = 0, where R = [IK ,−IK ]. Let the estimators

for the asymptotic covariance matrix of the FIML estimators (θ̂03, θ̂04) for the previous

and succeeding periods be (V̂03, V̂04). Then, the Wald-type test statistic is given by

q = e′(RV̂R′)−1e
d−→ χ2(K) , (A.22)

where T1 and T2 are the sample size for the previous and succeeding periods, respectively,

then it follows that

e = R

[ √
T1θ̂03√
T2θ̂04

]
, V̂ =

[
V̂03 O

O V̂04

]
. (A.23)

Note that V̂ is the block diagonal matrix, since E [∂ logL/∂θ03∂θ
′
04] = O.

Derivations of Coefficients of determination: There are many approaches to Tobit

model’s coefficient of determination, as described in the survey article by Veall and

Zimmerman (1996). For the two reduced forms (4.15) and (4.16) that examined herein,

we consider the following variance ratios:

0 ≤ Var[ E [y(g)t |zt] ]
Var[y(g)t ]

= 1− Var[ε(g)t ]

Var[y(g)t ]
≤ 1 , g = 1, 2 . (A.24)

The advantage of this approach is that the conditional expectation in the numerator

and ε
(g)
t = y

(g)
t − E [y(g)t |zt] is uncorrelated, meaning that they can be interpreted in the

same way as a usual linear regression analysis. The conditional expectations including

y
(1)
t = 0 with zt as given are as follows:

E [y(1)t |zt] = (π′
1zt)Φ(

π′
1zt
ω1

) + ω1φ(
π′
1zt
ω1

) ≥ 0 a.s. , (A.25)

E [y(2)t |zt] = β2E [y(1)t |zt] + γ′
2z

(2)
t . (A.26)

The reduced form parameters in equations (A.25) and (A.26) can be estimated from the

relationship between (4.17). We denote these predicted values as ŷ
(g)
t (g = 1, 2), then

the coefficients of determination R2
(g) are

R2
(g) =

∑T
t=1(ŷ

(g)
t − ¯̂y

(g)
t )2∑T

t=1(y
(g)
t − ȳ

(g)
t )2

, g = 1, 2 , (A.27)

where ȳ
(g)
t and ¯̂y

(g)
t are the sample averages for y

(g)
t and ŷ

(g)
t , respectively. zt is composed

almost entirely of predetermined variables; therefore, its meaning covers the extent to

which the intervention volume and change in exchange rate can be predicted using

information of up till the preceding day.
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